Exogenous mRNA delivery and bioavailability in gene transfer mediated by piggyBac transposition
نویسندگان
چکیده
BACKGROUND Up to now, the different uptake pathways and the subsequent intracellular trafficking of plasmid DNA have been largely explored. By contrast, the mode of internalization and the intracellular routing of an exogenous mRNA in transfected cells are poorly investigated and remain to be elucidated. The bioavailability of internalized mRNA depends on its intracellular routing and its potential accumulation in dynamic sorting sites for storage: stress granules and processing bodies. This question is of particular significance when a secure transposon-based system able to integrate a therapeutic transgene into the genome is used. Transposon vectors usually require two components: a plasmid DNA, carrying the gene of interest, and a source of transposase allowing the integration of the transgene. The principal drawback is the lasting presence of the transposase, which could remobilize the transgene once it has been inserted. Our study focused on the pharmacokinetics of the transposition process mediated by the piggyBac transposase mRNA transfection. Exogenous mRNA internalization and trafficking were investigated towards a better apprehension and fine control of the piggyBac transposase bioavailability. RESULTS The mRNA prototype designed in this study provides a very narrow expression window of transposase, which allows high efficiency transposition with no cytotoxicity. Our data reveal that exogenous transposase mRNA enters cells by clathrin and caveolae-mediated endocytosis, before finishing in late endosomes 3 h after transfection. At this point, the mRNA is dissociated from its carrier and localized in stress granules, but not in cytoplasmic processing bodies. Some weaker signals have been observed in stress granules at 18 h and 48 h without causing prolonged production of the transposase. So, we designed an mRNA that is efficiently translated with a peak of transposase production 18 h post-transfection without additional release of the molecule. This confines the integration of the transgene in a very small time window. CONCLUSION Our results shed light on processes of exogenous mRNA trafficking, which are crucial to estimate the mRNA bioavailability, and increase the biosafety of transgene integration mediated by transposition. This approach provides a new way for limiting the transgene copy in the genome and their remobilization by mRNA engineering and trafficking.
منابع مشابه
Optimization of the piggyBac Transposon Using mRNA and Insulators: Toward a More Reliable Gene Delivery System
Integrating and expressing stably a transgene into the cellular genome remain major challenges for gene-based therapies and for bioproduction purposes. While transposon vectors mediate efficient transgene integration, expression may be limited by epigenetic silencing, and persistent transposase expression may mediate multiple transposition cycles. Here, we evaluated the delivery of the piggyBac...
متن کاملHyperactive piggyBac gene transfer in human cells and in vivo.
We characterized a recently developed hyperactive piggyBac (pB) transposase enzyme [containing seven mutations (7pB)] for gene transfer in human cells in vitro and to somatic cells in mice in vivo. Despite a protein level expression similar to that of native pB, 7pB significantly increased the gene transfer efficiency of a neomycin resistance cassette transposon in both HEK293 and HeLa cultured...
متن کاملA gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase.
The piggyBac (PB) transposable element has recently accumulated enormous attention as a tool for the transgenesis in various eukaryotic organisms. Arginine-rich cell-penetrating peptides (CPPs) are protein transduction domains containing a large amount of basic amino acids that were found to be capable of delivering biologically active macromolecules into living cells. In this study, we demonst...
متن کاملPiggyBac Mediated Multiplex Gene Transfer in Mouse Embryonic Stem Cell
PiggyBac system has been shown to have a high efficiency to mediate gene transfer. However, there are no reports on its efficiency to mediate multiplex transgenes in mouse embryonic stem cells. Here we first established an immortalized feeder cell line by introducing four antibiotic resistance genes simultaneously into the original SNL 76/7 feeder cell line utilizing the PiggyBac system. This i...
متن کاملO-10: Sperm Mediated Gene Transfer Using Adjuvant Preserving Fertility for Production of Transgenic Chicken Expressing
Background: Low uptake of exogenous DNA by sperm and reduced number of fertilized oocyte by transfected sperm are the major obstacles for progression of sperm mediated gene transfer. Therefore, the modification of sperm mediated gene transfer procedure needs to be required. The purpose of this study was to evaluate the efficiency of FuGene 6 compare to lipofection in transfection medium for int...
متن کامل